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Abstract. In this paper, the dynamic behavior of an interface crack between two dissimilar functionally graded piezoelec-
tric/piezomagnetic material half infinite planes subjected to the harmonic anti-plane shear stresswaves is investigated. To make
the analysis tractable, it is assumed that the material properties vary exponentially with coordinate vertical to the crack. By
using the Fourier transform technique, the problem can be solved with the help of a pair of dual integral equations in which
the unknown variable is the jump of displacements across the crack surfaces. These equations are solved by using the Schmidt
method. The relations among the electric filed, the magnetic flux field and the dynamic stress field near the crack tips can be
obtained. Numerical examples are provided to show the effect of the functionally graded parameter and the circular frequency
of the incidentwavesupon the stress, the electric displacement and the magnetic flux intensity factors of the crack.
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1. Introduction

The magnetoelectric coupling is a new product property of the composites, since it is absent in each
constituent. In some cases, the coupling effect of piezoelectric/piezomagnetic composites can be even
obtained a hundred times larger than that in single-phase magnetoelectric materials. Consequently,
they are extensively used as magnetic field probes, electric packaging, acoustic, hydrophones, medical
ultrasonic imaging, sensors, and actuators with the capability of magneto-electro-mechanical energy
conversion [1]. The development of piezoelectric/piezomagnetic composites has its roots in the early
work of van Suchtelen [2] who proposed that the combination of piezoelectric-piezomagnetic phases may
exhibit a new material property – the magnetoelectric coupling effect. Since then, the magnetoelectric
coupling effect of BaTiO3-CoFe2O4 composites has been measured by many researchers. Much of
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the theoretical work for the investigation of magnetoelectric coupling effect has only recently been
studied [1,3,5–8]. When subjected to mechanical, magnetic and electrical loads in service, these
magneto-electro-elastic composites can fail prematurely due to some defects, e.g. cracks, holes, etc.
arising during their manufacturing processes. Therefore, it is of great importance to study the magneto-
electro-elastic interaction and fracture behaviors of magneto-electro-elastic composites [9–20]. On
the other hand, the development of functionally graded materials has demonstrated that they have the
potential to reduce the stress concentration and increase of fracture toughness. Consequently, the
concept of functionally graded materials can be extended to the piezoelectric/piezomagnetic materials
to improve the reliability of piezoelectric/piezomagnetic materials and structures. Some application of
functionally graded piezoelectric materials have been made [21,22]. Recently, the fracture problems
of functionally graded piezoelectric materials have been considered in [23–28]. Li and Weng [27] first
considered the static anti-plane problem of a finite crack in functionally graded piezoelectric material
strip. Their results showed that the singular stress and electric displacements in functionally graded
piezoelectric materials carry the same forms as those in the homogeneous piezoelectric materials but
the magnitudes of the intensity factors depend significantly upon the gradient of the functionally graded
piezoelectric materials properties. More recently, Zhou and Wang [29,30] first studied the static ant-
plane problems of two parallel cracks and a crack in functionally graded piezoelectric/piezomagnetic
materials by using Schmidt method [31]. Their results also showed that the singular stress, the singular
electric displacements and the singular magnetic flux in functionally graded piezoelectric/piezomagnetic
materials carry the same forms as those in the homogeneous piezoelectric/piezomagnetic materials but
the magnitudes of the intensity factors depend significantly upon the gradient of the functionally graded
piezoelectric/piezomagnetic materials properties. However, to our knowledge, the dynamic magneto-
electro-elastic behavior of functionally graded piezoelectric/piezomagnetic materials with an interface
crack subjected to the harmonic anti-plane shear stress waves has not been studied. The present work is
an attempt to offer the related information. Here, we give a theoretical solution for this problem.

In this paper, we attempt to extend the concept of functionally graded materials to study the fracture
problem of piezoelectric/piezomagnetic materials. The dynamic magneto-electro-elastic behavior of
a permeable interface crack between two dissimilar functionally graded piezoelectric/piezomagnetic
material half infinite planes subjected to the harmonic anti-plane shear stress waves is investigated using
the Schmidt method [31]. To make the analysis tractable, it is assumed that the material properties
vary exponentially with coordinate vertical to the crack. Fourier transform technique is applied and
a mixed boundary value problem is reduced to a pair of dual integral equations. To solve the dual
integral equations, the jump of displacements across the crack surface is expanded in a series of Jacobi
polynomials. Numerical solutions are obtained for the dynamic stress, the electric displacement and the
magnetic flux intensity factors for permeable crack surface conditions.

2. Formulation of the problem

It is assumed that there is an interface crack of length 2l between two dissimilar functionally graded
piezoelectric/piezomagnetic material half infinite planes as shown in Fig. 1. It is also assumed that
the propagation direction of the harmonic elastic anti-plane shear stress wave is vertical to the crack in
functionally graded piezoelectric/piezomagneticmaterials. Letω be the circular frequency of the incident
wave.w(i)

0 (x, y, t), φ
(i)
0 (x, y, t) andψ

(i)
0 (x, y, t)(i = 1, 2) are the mechanical displacement, the electric

potential and the magnetic potential, respectively.τ
(i)
zk0(x, y, t), D

(i)
k0 (x, y, t) and B

(i)
k0 (x, y, t) (k =
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Fig. 1. An interface crack in functionally graded piezoelectric/piezomagnetic materials.

x, y, i = 1, 2) are the anti-plane shear stress field, in-plane electric displacement field and in-plane
magnetic flux, respectively. Also note that all quantities with superscripti(i = 1, 2) refer to the upper
half plane 1 and the lower half plane 2 as shown in Fig. 1, respectively. Because of the incident wave is
the harmonic anti-plane shear stress waves, all field quantities ofw

(i)
0 (x, y, t), φ

(i)
0 (x, y, t), ψ

(i)
0 (x, y, t),

τ
(i)
zk0(x, y, t), D

(i)
k0 (x, y, t) andB

(i)
k0 (x, y, t) can be assumed to be of the forms as follows

[w(i)
0 (x, y, t), φ

(i)
0 (x, y, t), ψ

(i)
0 (x, y, t), τ

(i)
zk0(x, y, t), D

(i)
k0 (x, y, t), B

(i)
k0 (x, y, t)] =

[w(i)(x, y), φ(i)(x, y), ψ(i)(x, y), τ
(i)
zk (x, y), D

(i)
k (x, y), B

(i)
k (x, y)]e−iωt (1)

In what follows, the time dependence ofe−iωt will be suppressed but understood. The functionally
graded piezoelectric/piezomagnetic materials boundary-value problem for the harmonic anti-plane shear
waves is considerably simplified if we consider only the out-of-plane displacement, the in-plane electric
fields and the in-plane magnetic fields. As discussed in [32,33], since no opening displacement exists for
the present anti-plane problem, the crack surfaces can be assumed to be in perfect contact. Accordingly,
permeable condition will be enforced in the present study, i.e., the electric potential, the magnetic
potential, the normal electric displacement and the magnetic flux are assumed to be continuous across
the crack surfaces. Here, the standard superposition technique is used in the present paper. So the
boundary conditions of the present problem are (In this paper, we just consider the perturbation field.){

τ
(1)
yz (x, 0+) = τ

(2)
yz (x, 0−) = −τ0, |x| ≤ l

τ
(1)
yz (x, 0+) = τ

(2)
yz (x, 0−), w(1)(x, 0+) = w(2)(x, 0−), |x| > l

(2)

{
φ(1)(x, 0+) = φ(2)(x, 0−), D

(1)
y (x, 0+) = D

(2)
y (x, 0−)

ψ(1)(x, 0+) = ψ(2)(x, 0−), B
(1)
y (x, 0+) = B

(2)
y (x, 0−)

, |x| � ∞ (3)




w(1)(x, y) = w(2)(x, y) = 0
φ(1)(x, y) = φ(2)(x, y) = 0
ψ(1)(x, y) = ψ(2)(x, y) = 0

for (x2 + y2)1/2 → ∞ (4)

whereτ0 is a magnitude of the incident wave.
Crack problems in the non-homogeneous piezoelectric/piezomagnetic materials do not appear to be

analytically tractable for arbitrary variations of material properties. Usually, one tries to generate the
forms of non- homogeneities for which the problem becomes tractable. Similar to the treatment of
the crack problem for isotropic non-homogeneous materials in [21–30,34–36], we assume the material
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properties are described by:


c
(1)
44 = c

(1)
440eβ(1)y, e

(1)
15 = e

(1)
150eβ(1)y, ε

(1)
11 = ε

(1)
110eβ(1)y

q
(1)
15 = q

(1)
150eβ(1)y, d

(1)
11 = d

(1)
110eβ(1)y, µ

(1)
11 = µ

(1)
110eβ(1)y, ρ(1)(y) = ρ

(1)
0 eβ(1)y

c
(2)
44 = c

(2)
440eβ(2)y, e

(2)
15 = e

(2)
150eβ(2)y, ε

(2)
11 = ε

(2)
110eβ(2)y

q
(2)
15 = q

(2)
150eβ(2)y, d

(2)
11 = d

(2)
110eβ(2)y, µ

(2)
11 = µ

(2)
110eβ(2)y, ρ(2)(y) = ρ

(2)
0 eβ(2)y

(5)

wherec
(i)
440, e

(i)
150, ε

(i)
110, q

(i)
150, d

(i)
150, µ

(i)
110, ρ

(i)
0 andβ(i)(i = 1, 2) are the shear modulus, the piezoelectric

coefficient, the dielectric parameter, the piezomagnetic coefficient, the magnetioelectric coefficient,
the magnetic permeability, the mass density and the functionally graded parameter of two dissimilar
functionally graded piezoelectric/piezomagnetic material half planes, respectively. Here, the normalized
non-homogeneity constantsβ (i)l(i = 1, 2) are varied between−2 and 2, which covers most of the
practical cases.

The constitutive equations for the mode III crack can be expressed as follows:

τ
(i)
zk = c

(i)
44 w

(i)
,k + e

(i)
15 φ

(i)
,k + q

(i)
15 ψ

(i)
,k , (k = x, y, i = 1, 2) (6)

D
(i)
k = e

(i)
15 w

(i)
,k − ε

(i)
11 φ

(i)
,k − d

(i)
11 ψ

(i)
,k , (k = x, y, i = 1, 2) (7)

B
(i)
k = q

(i)
15 w

(i)
,k − d

(i)
11 φ

(i)
,k − µ

(i)
11 ψ

(i)
,k , (k = x, y, i = 1, 2) (8)

The anti-plane governing equations can be written as follows:

c
(i)
440(∇2w(i) + β(i) ∂w(i)

∂y
) + e

(i)
150(∇2φ(i) + β(i) ∂φ(i)

∂y
) + q

(i)
150(∇2ψ(i) + β(i) ∂ψ(i)

∂y
)

= −ρ
(i)
0 ω2w(i) (9)

e
(i)
150(∇2w(i) + β(i) ∂w(i)

∂y
) − ε

(i)
110(∇2φ(i) + β(i) ∂φ(i)

∂y
) − d

(i)
110(∇2ψ(i) + β(i) ∂ψ(i)

∂y
) = 0 (10)

q
(i)
150(∇2w(i) + β(i) ∂w(i)

∂y
) − d

(i)
110(∇2φ(i) + β(i) ∂φ(i)

∂y
) − µ

(i)
110(∇2ψ(i) + β(i) ∂ψ(i)

∂y
) = 0 (11)

where−ρ
(i)
0 ω2w(i)(x, y)e−iωt = ρ

(i)
0

∂2w
(i)
0 (x,y,t)

∂t2
= ρ

(i)
0

∂2(w(i)(x,y)e−iωt)
∂t2

and∇2 = ∂2/∂x2 + ∂2/∂y2 is
the two dimensional Laplace operator.

3. Solutions

Because of the assumed symmetry in geometry and loading, it is sufficient to consider the problem
for 0 � x < ∞, −∞ � y < ∞ only. The system of above governing Eqs (9)–(11) is solved using the
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Fourier integral transform technique to obtain the general expressions for the displacement components,
the electric potentials and the magnetic potentials as follows:


w(1)(x, y) = 2

π

∫ ∞
0 A1(s)e−γ

(1)
1 y cos(sx)ds

φ(1)(x, y) = a
(1)
0 w(1)(x, y) + 2

π

∫ ∞
0 B1(s)e−γ

(1)
2 y cos(sx)ds

ψ(1)(x, y) = a
(1)
1 w(1)(x, y) + 2

π

∫ ∞
0 C1(s)e−γ

(1)
2 y cos(sx)ds

, (y � 0) (12)




w(2)(x, y) = 2
π

∫ ∞
0 A2(s)eγ

(2)
1 y cos(sx)ds

φ(2)(x, y) = a
(2)
0 w(2)(x, y) + 2

π

∫ ∞
0 B2(s)eγ

(2)
2 y cos(sx)ds

ψ(2)(x, y) = a
(2)
1 w(2)(x, y) + 2

π

∫ ∞
0 C2(s)eγ

(2)
2 y cos(sx)ds

, (y � 0) (13)

whereA1(s), B1(s), C1(s), A2(s), B2(s) andC2(s) are unknown functions,

γ
(1)
1 =

β(1) +
√

β(1)2 + 4[s2 − ω2/c2
1]

2
, γ

(1)
2 =

β(1) +
√

β(1)2 + 4s2

2
, c1 =

√
µ

(1)
0 /ρ

(1)
0 ,

µ
(1)
0 = c

(1)
440 + a

(1)
0 e

(1)
150 + a

(1)
1 q

(1)
150, a

(1)
0 =

µ
(1)
110e

(1)
150 − d

(1)
110q

(1)
150

ε
(1)
110µ

(1)
110 − d

(1)2
110

, a
(1)
1 =

q
(1)
150ε

(1)
110 − d

(1)
110e

(1)
150

ε
(1)
110µ

(1)
110 − d

(1)2
110

,

γ
(2)
1 =

β(2) +
√

β(2)2 + 4[s2 − ω2/c2
2]

2
, γ

(2)
2 =

β(2) +
√

β(2)2 + 4s2

2
, c2 =

√
µ

(2)
0 /ρ

(2)
0 ,

µ
(2)
0 = c

(2)
440 + a

(2)
0 e

(2)
150 + a

(2)
1 q

(2)
150, a

(2)
0 =

µ
(2)
110e

(2)
150 − d

(2)
110q

(2)
150

ε
(2)
110µ

(2)
110 − d

(2)2
110

, a
(2)
1 =

q
(2)
150ε

(2)
110 − d

(2)
110e

(2)
150

ε
(2)
110µ

(2)
110 − d

(2)2

110

.

So from Eqs (6)–(8), we have

τ (1)
yz (x, y) = −2eβ(1)y

π

∫ ∞

0
{µ

(1)
0 γ

(1)
1 A1(s)e−γ

(1)
1 y + γ

(1)
2 [e(1)

150B1(s)

+q
(1)
150C1(s)]e−γ

(1)
2 y} cos(sx)ds (14)

D(1)
y (x, y) =

2eβ(1)y

π

∫ ∞

0
γ

(1)
2 [ε(1)

110B1(s) + d
(1)
110C1(s)]e−γ

(1)
2 y cos(sx)ds (15)

B(1)
y (x, y) =

2eβ(1)y

π

∫ ∞

0
γ

(1)
2 [d(1)

110B1(s) + µ
(1)
110C1(s)]eγ

(1)
2 y cos(sx)ds (16)

τ (2)
yz (x, y) =

2eβ(2)y

π

∫ ∞

0
{µ

(2)
0 γ

(2)
1 A2(s)eγ

(2)
1 y + γ

(2)
2 [e(2)

150B2(s)

+q
(2)
150C2(s)]eγ

(2)
2 y} cos(sx)ds (17)
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D(2)
y (x, y) = −2eβ(2)y

π

∫ ∞

0
γ

(2)
2 [ε(2)

110B2(s) + d
(2)
110C2(s)]eγ

(2)
2 y cos(sx)ds (18)

B(2)
y (x, y) = −2eβ(2)y

π

∫ ∞

0
γ

(2)
2 [d(2)

110B2(s) + µ
(2)
110C2(s)]eγ

(2)
2 y cos(sx)ds (19)

To solve the problem, the jump of displacements across the crack surfaces is defined as follows:

f(x) = w(1)(x, 0+) − w(2)(x, 0−) (20)

Substituting Eqs (12)–(13) into Eq. (20), and applying the Fourier transform and the boundary conditions
(3), it can be obtained

f̄(s) = A1(s) − A2(s) (21)

a
(1)
0 A1(s) − a

(2)
0 A2(s) + B1(s) − B2(s) = 0 (22)

a
(1)
1 A1(s) − a

(2)
1 A2(s) + C1(s) − C2(s) = 0 (23)

A superposed bar indicates the Fourier transform throughout the paper. Substituting Eqs (14)–(19) into
the boundary conditions (2)–(4), we have

µ
(1)
0 γ

(1)
1 A1(s) + γ

(1)
2 [e(1)

150B1(s) + q
(1)
150C1(s)] + µ

(2)
0 γ

(2)
1 A2(s)

+γ
(2)
2 [e(2)

150B2(s) + q
(2)
150C2(s)] = 0 (24)

γ
(1)
2 [ε(1)

110B1(s) + d
(1)
110C1(s)] + γ

(2)
2 [ε(2)

110B2(s) + d
(2)
110C2(s)] = 0 (25)

γ
(1)
2 [d(1)

110B1(s) + µ
(1)
110C1(s)] + γ

(2)
2 [d(2)

110B2(s) + µ
(2)
110C2(s)] = 0 (26)

By solving six Eqs (21)–(26) with six unknown functions and substituting the solutions into Eqs (14)–(16)
and applying the boundary conditions (2)–(3), it can be given:

2
π

∫ ∞

0
f̄(s) cos(sx)ds = 0, x > l (27)

2
π

∫ ∞

0
g1(s)f̄(s) cos(sx)ds = −τ0, 0 � x � l (28)

whereg1(s) is a known function (see Appendix).lim
s→∞ g1(s)/s = β1. β1 is a constant which depends on

the properties of the materials (see Appendix). However,β1 is independent of the functionally graded
parametersβ(1) andβ(2). When the properties of the upper and the lower half planes are continuous
along the crack line,β1 = −c

(1)
440/2. The above a pair of dual integral Eqs (27)–(28) must be solved to

determine the unknown function̄f(s).
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4. Solution of the dual integral equations

The Schmidt method [31] is used to solve the dual integral equations. The jump of displacements
across the crack surfaces is represented by the following series:

f(x) =
∞∑

n=1

bnP
( 1
2
, 1
2
)

2n−2 (
x

l
)(1 − x2

l2
)

1
2 , for]0 � x � l (29)

f(x) = w(1)(x, 0) − w(2)(x, 0) = 0, for x > l (30)

wherebn are unknown coefficients to be determined andP
( 1

2
, 1
2)

n (x) is a Jacobi polynomial [37]. The
Fourier transforms of Eqs (29)–(30) are [38]

f̄(s) =
∞∑

n=1

bnGn
1
s

J2n−1(sl), Gn = 2
√

π(−1)n−1 Γ(2n − 1
2)

(2n − 2)!
(31)

whereΓ(x) andJn(x) are the Gamma and Bessel functions, respectively.
Substituting Eq. (31) into Eqs (27)–(28), Eq. (27) has been automatically satisfied. After integration

with respect tox in [0, x], Eq. (28) reduces to

2
π

∞∑
n=1

bnGn

∫ ∞

0

1
s2

g1(s)J2n−1(sl) sin(sx)ds = −τ0x, 0 � x � l (32)

From the following relationship [37]

∫ ∞

0

1
s

Jn(sa) sin(bs)ds =




sin[n sin−1(b/a)]
n , a > b

an sin(nπ/2)

n[b+
√

b2−a2]n
, b > a

(33)

the semi-infinite integral in Eq. (32) can be modified as:∫ ∞

0

1
s

[
β1 + (

g1(s)
s

− β1)
]
J2n−1(sl) sin(sx)ds =

β1

2n − 1
sin

[
(2n − 1) sin−1(

x

l
)
]

+
∫ ∞

0

1
s

g1(s) − β1s

s
J2n−1(sl) sin(sx)ds (34)

It can be seen that the integrands of the semi-infinite integrals in the right end of Eq. (34) tend rapidly
to zero. Thus the semi-infinite integral in Eq. (34) can be numerical evaluated easily. Equation (32) can
now be solved for the coefficientsbn by the Schmidt method [31]. For brevity, Eq. (32) can be rewritten
as follows:

∞∑
n=1

bnEn(x) = U(x), 0 � x � l (35)

whereEn(x) andU(x) are known functions and the coefficientsbn are to be determined. A set of
functionsPn(x) which satisfy the orthogonality condition∫ l

0
Pm(x)Pn(x)dx = Nnδmn, Nn =

∫ l

0
P 2

n(x)dx (36)
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can be constructed from the functionEn(x), such that

Pn(x) =
n∑

i=1

Min

Mnn
Ei(x) (37)

whereMij is the cofactor of the elementdij of Dn, which is defined as

Dn =




d11, d12, d13, . . . , d1n

d21, d22, d23, . . . , d2n

d31, d32, d33, . . . , d3n

. . .

. . .

. . .
dn1, dn2, dn3, . . . , dnn




, dij =
∫ l

0
Ei(x)Ej(x)dx (38)

Using Eqs (35)–(38), we obtain

bn =
∞∑

j=n

qj
Mnj

Mjj
with qj =

1
Nj

∫ l

0
U(x)Pj(x)dx (39)

5. Intensity factors

The coefficientsbn are known, so that the entire perturbation stress field, the perturbation electric
displacement field and the magnetic flux can be obtained. However, in fracture mechanics, it is of
importance to determine the perturbation stressτ

(1)
yz , the perturbation electric displacementD

(1)
y and the

magnetic fluxB(1)
y in the vicinity of the crack tips. In the case of the present study,τ

(1)
yz , D

(1)
y andB

(1)
y

along the crack line can be expressed respectively as

τ (1)
yz (x, 0) =

2
π

∞∑
n=1

bnGn

∫ ∞

0

1
s

g1(s)J2n−1(sl) cos(xs)ds

=
2β1

π

∞∑
n=1

bnGn

∫ ∞

0
J2n−1(sl) cos(xs)ds

+
2
π

∞∑
n=1

bnGn

∫ ∞

0

[
1
s

g1(s) − β1

]
J2n−1(sl) cos(xs)ds (40)

D(1)
y (x, 0) =

2
π

∞∑
n=1

bnGn

∫ ∞

0

g2(s)
s

J2n−1(sl) cos(xs)ds

=
2β2

π

∞∑
n=1

bnGn

∫ ∞

0
J2n−1(sl) cos(xs)ds

+
2
π

∞∑
n=1

bnGn

∫ ∞

0

[
1
s

g2(s) − β2

]
J2n−1(sl) cos(xs)ds (41)
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B(1)
y (x, 0) =

2
π

∞∑
n=1

bnGn

∫ ∞

0

g3(s)
s

J2n−1(sl) cos(xs)ds

=
2β3

π

∞∑
n=1

bnGn

∫ ∞

0
J2n−1(sl) cos(xs)ds

+
2
π

∞∑
n=1

bnGn

∫ ∞

0

[
1
s

g3(s) − β3

]
J2n−1(sl) cos(xs)ds (42)

whereg2(s) andg3(s) are known functions (see Appendix).lim
s→∞ g2(s)/s = β2. lim

s→∞ g3(s)/s = β3.

Whereβ2 andβ3 are two constants which depend on the properties of the materials (see Appendix). When
the properties of the upper and the lower half planes are continuous along the crack line,β 2 = −e

(1)
150/2

andβ3 = −q
(1)
150/2.

From the following relationship [37]

∫ ∞

0
Jn(sa) cos(bs)ds =




cos[n sin−1(b/a)]√
a2−b2

, a > b

− an sin(nπ/2)√
b2−a2[b+

√
b2−a2]n

, b > a
(43)

the singular parts of the stress field, the electric displacement and the magnetic flux near the crack tips
in Eqs (40)–(42) can be expressed, respectively, as follows (x > l):

τ = −2β1

π

∞∑
n=1

bnGnHn(x) (44)

D = −2β2

π

∞∑
n=1

bnGnHn(x) (45)

B = −2β3

π

∞∑
n=1

bnGnHn(x) (46)

whereHn(x) = (−1)n−1l2n−1√
x2−l2[x+

√
x2−l2]2n−1

.

The stress intensity factorK, the electric displacement intensity factorK D and the magnetic flux
intensity factorKB can be expressed, respectively, as follows:

K = lim
x→l+

√
2(x − l) · τ = − 4β1√

πl

∞∑
n=1

bn
Γ(2n − 1

2)
(2n − 2)!

(47)

KD = lim
x→l+

√
2(x − l) · D = − 4β2√

πl

∞∑
n=1

bn
Γ(2n − 1

2 )
(2n − 2)!

=
β2

β1
K (48)

KB = lim
x→l+

√
2(x − l) · B = − 4β3√

πl

∞∑
n=1

bn
Γ(2n − 1

2)
(2n − 2)!

=
β3

β1
K (49)
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Fig. 2. The stress intensity factor versusωl/c1 for l = 1.0, β(1)l = 0.2 andβ(2)l = 0.3 (Material-I/Material-II).
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Fig. 3. The electric displacement intensity factor versusωl/c1 for l = 1.0, β(1)l = 0.2 andβ(2)l = 0.3 (Material-I/Material-II).

6. Numerical calculations and discussion

From works [29–31], it can be seen that the Schmidt method performs satisfy if the first ten terms of
the infinite series Eq. (35) are retained. At−l � x � l, y = 0, it can be obtained thatτ (1)

yz /τ0 is very
close to negative unity. Hence, the solution of present paper can also be proved to satisfy the boundary
conditions (1). In all computations, according to [9,10,17], the constants of materials-I are assumed to
be thatc(1)

440 = 44.0 (GPa),e(1)
150 = 5.8 (C/m2), ε

(1)
110 = 5.64 × 10−9 (C2/Nm2), q

(1)
150 = 275.0 (N/Am),

d
(1)
110 = 0.005×10−9 (Ns/VC),µ(1)

110 = −297.0×10−6 (Ns2/C2), ρ
(1)
0 = 1500 kg/m3 and the constants of

materials-II are assumed to be thatc
(2)
440 = 34.0 (GPa),e(2)

150 = 4.8 (C/m2), ε
(2)
110 = 4.64×10−9 (C2/Nm2),

q
(2)
150 = 195.0 (N/Am), d

(2)
110 = 0.004 × 10−9 (Ns/VC), µ

(2)
110 = −201.0 × 10−6 (Ns2/C2), ρ

(2)
0 =

1000 kg/m3. The results of the present paper are shown in Figs 2–12. From the results, the following
observations are very significant:

(i) From the results, it can be shown that the singular stress, electric displacements and the magnetic
flux in functionally graded piezoelectric/piezomagnetic materials carry the same forms as those
in the homogeneous piezoelectric/piezomagnetic materials or in the homogeneous piezoelectric
materials but the magnitudes of the intensity factors depend significantly upon the gradient of the
functionally graded piezoelectric/piezomagnetic materials properties as discussed in [27–30].
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Fig. 4. The magnetic flux intensity factor versusωl/c1 for l = 1.0, β(1)l = 0.2 andβ(2)l = 0.3 (Material-I/Material-II).
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Fig. 5. The stress intensity factor versusωl/c1 for l = 1.0, β(1)l = 0.4 andβ(2)l = 0.3 (Material-I/Material-I).

(ii) The electro-magneto-elastic coupling effects can be obtained as shown in Eqs (47)–(49). For
the electric displacement and the magnetic flux intensity factors, they have the same changing
tendency as the stress intensity factor as shown in Figs 2–4. This might be due to the linearity of the
fracture problem. However, the amplitude values of the electric displacement filed, the magnetic
flux field and the stress field are different. The amplitude values of the electric displacement
and the magnetic flux fields are very small as shown in Figs 3 and 4. The results of the electric
displacement and the magnetic flux intensity factors can be directly obtained form the results of
the stress intensity factors through Eqs (47)–(49). This means that an applied mechanical load
alone can produce the electric displacement and magnetic flux singularities. The results of the
electric displacement and the magnetic flux intensity factors of the other cases have been omitted
in the present paper.

(iii) The stress, the electric displacement and the magnetic flux intensity factors of crack in the
functionally graded materials increase with the increase of the incident wave frequency until
reaching a peak and then to decrease in magnitude as shown in Figs 2–6. When the material
properties of the upper half plane and the lower half plane alone the crack line are continuous,
it can be got the same conclusion as shown in Figs 5–6. In this case, the results are very close
to one another showing a weak dependency on the value ofβ (2)l. It can be also obtained that
this conclusion is the same as the dynamic anti-plane shear fracture problem in the isotropic
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Fig. 6. The stress intensity factor versusωl/c1 for l = 1.0, β(1)l = 0.4 andβ(2)l = 0.0 (Material-I/Material-I).
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Fig. 7. The stress intensity factor versusβ(1)l for l = 1.0, ωl/c1 = 0.3 andβ(2)l = 0.3 (Material-I/Material-II).
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Fig. 8. The stress intensity factor versusβ(2)l for l = 1.0, ωl/c1 = 0.3 andβ(1)l = 0.4 (Material-I/Material-II).

homogeneous materials as shown in Figs 5–6. From the results, it can be concluded that the
stress, the electric displacement and the magnetic fields near the crack tips can be deduced by
adjusting the frequency of incident waves in engineering practices.

(iv) The stress intensity factors decrease with the increase in the functionally graded parametersβ (i)l
(i = 1, 2) as shown in Figs 7–12. Form the results as shown in Figs 7–12, it can be obtained that
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Fig. 9. The stress intensity factor versusβ(1)l for l = 1.0, ωl/c1 = 0.3 andβ(2)l = β(1)l (Material-I/Material-II).
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Fig. 10. The stress intensity factor versusβ(1)l for l = 1.0, ωl/c1 = 0.3 andβ(2)l = 0.3 (Material-I/Material-I).
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Fig. 11. The stress intensity factor versusβ(1)l for l = 1.0, ωl/c1 = 0.3 andβ(2)l = 0.0 (Material-I/Material-I).

the stress intensity factors have a similar changing tendency with the variation ofβ (1)l or β(2)l.
When the material properties of the upper half plane and the lower half plane alone the crack line
are continuous, it can be got the same conclusion as shown in Figs 10–12. This means that, by
adjusting the functionally graded parameters, the dynamic stress fields near the crack tips can be
reduced.
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Fig. 12. The stress intensity factor versusβ(2)l for l = 1.0, ωl/c1 = 0.3 andβ(1)l = 0.4 (Material-I/Material-I).

(v) The solution of the present paper can revert to the one of the problem which the material properties
of the upper half plane and the lower half plane alone the crack line are continuous as shown in
Figs 5–6 and Figs 10–12.
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Appendix

The functions ofg1(s), g2(s) andg3(s) can be obtained by the operation of the follow matrixes.

[X1] =




1 0 0
a

(1)
0 1 0

a
(1)
1 0 1


 , [X2] =



−1 0 0
−a

(2)
0 −1 0

−a
(2)
1 0 −1


 , [X3] =


µ

(1)
0 γ

(1)
1 γ

(1)
2 e

(1)
150 γ

(1)
2 q

(1)
150

0 γ
(1)
2 ε

(1)
110 γ

(1)
2 d

(1)
110

0 γ
(1)
2 d

(1)
110 γ

(1)
2 µ

(1)
110


 ,

[X4] =


µ

(2)
0 γ

(2)
1 γ

(2)
2 e

(2)
150 γ

(2)
2 q

(2)
150

0 γ
(2)
2 ε

(2)
110 γ

(2)
2 d

(2)
110

0 γ
(2)
2 d

(2)
110 γ

(2)
2 µ

(2)
110


 , [X5] = [X1] − [X2] [X4]

−1 [X3] ,

[X6] =


−µ

(1)
0 γ

(1)
1 −γ

(1)
2 e

(1)
150 −γ

(1)
2 q

(1)
150

0 γ
(1)
2 ε

(1)
110 γ

(1)
2 d

(1)
110

0 γ
(1)
2 d

(1)
110 γ

(1)
2 µ

(1)
110


 , [X7] =


x11(s) x12(s) x13(s)

x21(s) x22(s) x23(s)
x31(s) x32(s) x33(s)


 = [X6] [X5]

−1 .

g1(s) = x11(s), g2(s) = x21(s), g3(s) = x31(s).
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The constants ofβ1, β2 andβ3 can be obtained by the operation of the follow matrixes.

[Y3] =


µ

(1)
0 e

(1)
150 q

(1)
150

0 ε
(1)
110 d

(1)
110

0 d
(1)
110 µ

(1)
110


 , [Y4] =


µ

(2)
0 e

(2)
150 q

(2)
150

0 ε
(2)
110 d

(2)
110

0 d
(2)
110 µ

(2)
110


 ,

[Y5] = [X1] − [X2] [Y4]
−1 [Y3] , [Y6] =


−µ

(1)
0 −e

(1)
150 −q

(1)
150

0 ε
(1)
110 d

(1)
110

0 d
(1)
110 µ

(1)
110


 ,

[Y7] =


y11 y12 y13

y21 y22 y23

y31 y32 y33


 = [Y6] [Y5]

−1 , β1 = y11, β2 = y21, β3 = y31.

References

[1] T.L. Wu and J.H. Huang, Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with
piezoelectric and piezomagnetic phases,International Journal of Solids and Structures 37 (2000), 2981–3009.

[2] J. Van Suchtelen, Product properties: a new application of composite materials,Phillips Research Reports 27 (1972),
28–37.

[3] G. Harshe, J.P. Dougherty and R.E. Newnham, Theoretical modeling of 3-0/0-3 magnetoelectric composites,International
Journal of Applied Electromagnetics in Materials 4 (1993), 161–171.

[4] M. Avellaneda and G. Harshe, Magnetoelectric effect in piezoelectric/magnetostrictive multiplayer (2-2) composites,
Journal of Intelligent Material Systems and Structures 5 (1994), 501–513.

[5] C.W. Nan, Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases,Physical Review B50 (1994),
6082–6088.

[6] Y. Benveniste, Magnetoelectric effect in fibrous composites with piezoelectric and magnetostrictive phases,Physical
Review B51 (1995), 16424–16427.

[7] J.H. Huang and W.S. Kuo, The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal
inclusions,Journal of Applied Physics 81(3) (1997), 1378–1386.

[8] J.Y. Li, Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials,
International Journal of Engineering Science 38 (2000), 1993–2011.

[9] G.C. Sih and Z.F. Song, Magnetic and electric poling effects associated with crack growth in BaTiO3-CoFe2O4 composite,
Theoretical and Applied Fracture Mechanics 39 (2003), 209–227.

[10] Z.F. Song and G.C. Sih, Crack initiation behavior in magnetoelectrioelastic composite under in-plane deformation,
Theoretical and Applied Fracture Mechanics 39 (2003), 189–207.

[11] B.L. Wang and Y.W. Mai, Crack tip field in piezoelectric/piezomagnetic media,European Journal of Mechanics. A/Solid
22(4) (2003), 591–602.

[12] B.L. Wang and Y.W. Mai, Fracture of piezoelectromagnetic materials,Mechanics Research Communications 31(1)
(2004), 65–73.

[13] C.F. Gao, P. Tong and T.Y. Zhang, Interfacial crack problems in magneto-electroelastic solids,International Journal of
Engineering Science 41(18) (2003), 2105–2121.

[14] C.F. Gao, H. Kessler and H. Balke, Fracture analysis of electromagnetic thermoelastic solids,European Journal of
Mechanics. A/Solid 22(3) (2003), 433–442.

[15] C.F. Gao, H. Kessler and H. Balke, Crack problems in magnetoelectroelastic solids. Part I: exact solution of a crack,
International Journal of Engineering Science 41(9) (2003), 969–981.

[16] C.F. Gao, H. Kessler and H. Balke, Crack problems in magnetoelectroelastic solids. Part II: general solution of collinear
cracks,International Journal of Engineering Science 41(9) (2003), 983–994.

[17] C.P. Spyropoulos, G.C. Sih and Z.F. Song, Magnetoelectroelastic composite with poling parallel to plane of line crack
under out-of-plane deformation,Theoretical and Applied Fracture Mechanics 39(3) (2003), 281–289.

[18] J.X. Liu, X.L. Liu and Y.B. Zhao, Green’s functions for anisotropic magnetoelectroelastic solids with an elliptical cavity
or a crack,International Journal of Engineering Science 39(12) (2001), 1405–1418.



132 Z.-G. Zhou and B. Wang / An interface crack between two dissimilar functionally graded

[19] Z.G. Zhou, L.Z. Wu and B. Wang, The dynamic behavior of two collinear interface cracks in magneto-electro-elastic
composites,European Journal of Mechanics. A/Solids 24(2) (2005), 253–262.

[20] Z.G. Zhou, B. Wang and Y.G. Sun, Two collinear interface cracks in magneto-electro-elastic composites,International
Journal of Engineering Science 42 (2004), 1157–1167.

[21] K. Takagi, J.F. Li, S. Yokoyama and R. Watanabe, Fabrication and evaluation of PZT/Pt piezoelectric composites and
functionally graded actuators,Journal of the European Ceramic Society 10 (2003), 1577–1583.

[22] D.R. Jin, Functionally graded PZT/ZnO piezoelectric composites,Journal of Materials Science Letters 22 (2003),
971–974.

[23] J. Chen, Z.X. Liu and Z.Z. Zou, Electriomechanical impact of a crack in a unctionally graded piezoelectric medium,
Theoretical and Applied Fracture Mechanics 39 (2003), 47–60.

[24] B. Jin and Z. Zhong, A moving mode-III crack in functionally graded piezoelectric material: permeable problem,
Mechanics Research Communications 29 (2002), 217–224.

[25] B.L. Wang, A mode-III crack in functionally graded piezoelectric materials,Mechanics Research Communications 30
(2003), 151–159.

[26] K.M. Soon, Electrical nonlinear anti-plane shear crack in a functionally graded piezoelectric strip,International Journal
of Solids and Structures 40 (2003), 5649–5667.

[27] C.Y. Li and G.J. Weng, Antiplane crack problem in functionally graded piezoelectric materials,Journal of Applied
Mechanics 69(4) (2002), 481–488.

[28] J.L. Sun, Z.G. Zhou and B. Wang, Dynamic behavior of a crack in a functionally graded piezoelectric strip bonded to
two dissimilar half piezoelectric material planes,ACTA Mechanica 176(1–2) (2005), 45–60.

[29] Z.G. Zhou and B. Wang, Two parallel symmetry permeable cracks in functionally graded piezoelectric/piezomagnetic
materials under anti-plane shear loading,International Journal of Solids and Structures 41 (2004), 4407–4422.

[30] Z.G. Zhou, L.Z. Wu and B. Wang, The behavior of a crack in functionally graded piezoelectric/piezomagnetic materials
under anti-plane shear loading,Archive of Applied Mechanics 74(8) (2005), 526–535.

[31] P.M. Morse and H. Feshbach,Methods of Theoretical Physics, Vol. 1, McGraw-Hill, New York, 1958.
[32] A.K. Soh, D.N. Fang and K.L. Lee, Analysis of a bi-piezoelectric ceramic layer with an interfacial crack subjected to

anti-plane shear and in-plane electric loading,European Journal of Mechanics. A/Solid 19 (2000), 961–977.
[33] K.N. Srivastava, K.N. Palaiya and D.S. Karaulia, Interaction of shearwaveswith two coplanar Griffith cracks situated in

an infinitely long elastic strip,International Journal of Fracture 23 (1983), 3–14.
[34] F. Delale and F. Erdogan, On the mechanical modeling of the interfacial region in bonded half-planes,ASME Journal of

Applied Mechanics 55 (1988), 317–324.
[35] H. Fildis and O.S. Yahsi, The axisymmetric crack problem in a non-homogeneous interfacial region between homogeneous

half-spaces,International Journal of Fracture 78 (1996), 139–163.
[36] M. Ozturk and F. Erdogan, Mode I crack problem in an inhomogeneous orthotropic medium,International Journal of

Engineering Science 35 (1997), 869–883.
[37] I.S. Gradshteyn and I.M. Ryzhik,Table of Integral, Series and Products, Academic Press, New York, 1980.
[38] A. Erdelyi, (ed.),Tables of Integral Transforms, Vol. 1, McGraw-Hill, New York, 1954.


